Carbon Dioxide in the Free Troposphere and Boundary Layer at the Mt. Bachelor Observatory
نویسندگان
چکیده
We use data for 2012–2014 from the Mt. Bachelor Observatory (MBO) in central Oregon to understand variations in carbon dioxide (CO2) in the free troposphere (FT) and boundary layer (BL). The goals of this analysis are to identify and examine CO2 in FT and BL air, events due to wildfires, the role of transport patterns, and the variation of CO2 seasonally. For all seasons, we found that FT air has higher average CO2 mixing ratios compared to BL air. FT air was most often seen during the night and early morning at MBO (20-8 PST) while BL air was most often observed during the afternoon and evening (12-20 PST). Winter and spring showed the highest mixing ratios of CO2 while summer and fall showed the lowest mixing ratios. The maximum diurnal change in CO2 was found during spring and summer. HYSPLIT backtrajectories and a cluster analysis of those trajectories were initiated for spring months. Based on this analysis, the spring clusters with the highest ozone and lowest water vapor mixing ratios were associated with the highest mixing ratios of CO2. Four case studies of CO2 variations are presented: a long-range transport event observed at MBO and three wildfire events. In one large fire event, CO2 showed a large enhancement and was well correlated with CO. In another fire event, CO2 was observed to decrease, suggesting that depletion in BL air by surface uptake can counteract the enhancements from wildfire emissions.
منابع مشابه
Observations of reactive gaseous mercury in the free troposphere at the Mount Bachelor Observatory
[1] We measured gaseous elemental mercury (GEM), particulate mercury (PHg), and reactive gaseous mercury (RGM), along with CO, ozone, and aerosol scatter at the Mount Bachelor Observatory (2.7 km above sea level), Oregon, from May to August 2005. The mean mercury concentrations (at standard conditions) were 1.54 ng/m (GEM), 5.2 pg/m (PHg), and 43 pg/m (RGM). RGM enhancements, up to 600 pg/m, oc...
متن کاملIntercontinental source attribution of ozone pollution at western U.S. sites using an adjoint method
[1] We use the GEOS-Chem chemical transport model and its adjoint to quantify source contributions to ozone pollution at two adjacent sites on the U.S. west coast in spring 2006: Mt. Bachelor Observatory (MBO) at 2.7 km altitude and Trinidad Head (TH) at sea level. The adjoint computes the sensitivity of ozone concentrations at the receptor sites to ozone production rates at 2 2.5 resolution ov...
متن کاملTropospheric aerosol profile information from high-resolution oxygen A-band measurements from space
Aerosols are an important factor in the Earth climatic system and they play a key role in air quality and public health. Observations of the oxygen A-band at 760 nm can provide information on the vertical distribution of aerosols from passive satellite sensors that can be of great interest for operational monitoring applications with high spatial coverage if the aerosol information is obtained ...
متن کاملبررسی تغییرات ارتفاع و ضخامت لایه مرزی در شرایط گردوغباری شهر اهواز
One of the most important components of the extent of pollutants mixing and air quality at near the Earth's surface is the height of boundary layer. Many variables involved in determining the height of the boundary layer of atmosphere. Although all of the troposphere (the lower ~10km of the atmosphere) is affected by surface conditions, most of it has a relatively slow response time. The lower ...
متن کاملInsight into the Boundary Layer Flows of Free Convection and Heat Transfer of Nanofluids over a Vertical Plate using Multi-Step Differential Transformation Method
This paper presents an insight into the boundary layer of free convection and heat transfer of nanofluids over a vertical plate at very low and high Prandtl number. Suitable similarity variables are used to convert the governing systems of nonlinear partial differential equations of the flow and heat transfer to systems of nonlinear ordinary differential equations which are solved using multi-s...
متن کامل